Divergent gene expression among phytoplankton taxa in response to upwelling
Robert H. Lampe
Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
Search for more papers by this authorNatalie R. Cohen
Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
Present address: Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.Search for more papers by this authorKelsey A. Ellis
Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
Search for more papers by this authorKenneth W. Bruland
Department of Ocean Sciences, University of California, Santa Cruz, CA, USA
Search for more papers by this authorMaria T. Maldonado
Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
Search for more papers by this authorTawnya D. Peterson
Institute of Environmental Health, Oregon Health & Science University, Portland, OR, USA
Search for more papers by this authorClaire P. Till
Department of Ocean Sciences, University of California, Santa Cruz, CA, USA
Department of Chemistry, Humboldt State University, Arcata, CA, USA
Search for more papers by this authorMark A. Brzezinski
The Marine Science Institute and the Department of Ecology Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
Search for more papers by this authorSibel Bargu
Department of Oceanography and Coastal Sciences, School of the Coast and Environment, Louisiana State University, Baton Rouge, LA, USA
Search for more papers by this authorKimberlee Thamatrakoln
Department of Marine and Coastal Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
Search for more papers by this authorFedor I Kuzminov
Department of Marine and Coastal Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
Search for more papers by this authorBenjamin S. Twining
Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
Search for more papers by this authorCorresponding Author
Adrian Marchetti
Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
For correspondence. E-mail [email protected]; Tel. (+1) 919 843 3473; Fax (+1) 919 962 1254.Search for more papers by this authorRobert H. Lampe
Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
Search for more papers by this authorNatalie R. Cohen
Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
Present address: Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.Search for more papers by this authorKelsey A. Ellis
Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
Search for more papers by this authorKenneth W. Bruland
Department of Ocean Sciences, University of California, Santa Cruz, CA, USA
Search for more papers by this authorMaria T. Maldonado
Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
Search for more papers by this authorTawnya D. Peterson
Institute of Environmental Health, Oregon Health & Science University, Portland, OR, USA
Search for more papers by this authorClaire P. Till
Department of Ocean Sciences, University of California, Santa Cruz, CA, USA
Department of Chemistry, Humboldt State University, Arcata, CA, USA
Search for more papers by this authorMark A. Brzezinski
The Marine Science Institute and the Department of Ecology Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
Search for more papers by this authorSibel Bargu
Department of Oceanography and Coastal Sciences, School of the Coast and Environment, Louisiana State University, Baton Rouge, LA, USA
Search for more papers by this authorKimberlee Thamatrakoln
Department of Marine and Coastal Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
Search for more papers by this authorFedor I Kuzminov
Department of Marine and Coastal Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
Search for more papers by this authorBenjamin S. Twining
Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
Search for more papers by this authorCorresponding Author
Adrian Marchetti
Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
For correspondence. E-mail [email protected]; Tel. (+1) 919 843 3473; Fax (+1) 919 962 1254.Search for more papers by this authorSummary
Frequent blooms of phytoplankton occur in coastal upwelling zones creating hotspots of biological productivity in the ocean. As cold, nutrient-rich water is brought up to sunlit layers from depth, phytoplankton are also transported upwards to seed surface blooms that are often dominated by diatoms. The physiological response of phytoplankton to this process, commonly referred to as shift-up, is characterized by increases in nitrate assimilation and rapid growth rates. To examine the molecular underpinnings behind this phenomenon, metatranscriptomics was applied to a simulated upwelling experiment using natural phytoplankton communities from the California Upwelling Zone. An increase in diatom growth following 5 days of incubation was attributed to the genera Chaetoceros and Pseudo-nitzschia. Here, we show that certain bloom-forming diatoms exhibit a distinct transcriptional response that coordinates shift-up where diatoms exhibited the greatest transcriptional change following upwelling; however, comparison of co-expressed genes exposed overrepresentation of distinct sets within each of the dominant phytoplankton groups. The analysis revealed that diatoms frontload genes involved in nitrogen assimilation likely in order to outcompete other groups for available nitrogen during upwelling events. We speculate that the evolutionary success of diatoms may be due, in part, to this proactive response to frequently encountered changes in their environment.
Supporting Information
Filename | Description |
---|---|
emi14361-sup-0001-appendixS1.docxWord 2007 document , 1.8 MB | Appendix S1. Supporting Information |
emi14361-sup-0002-appendixS2.xlsxExcel 2007 spreadsheet , 56.7 KB | Data Set S1. Uniquely overrepresented genes displayed in Fig. 4C for each taxonomic group. |
emi14361-sup-0003-appendixS3.xlsxExcel 2007 spreadsheet , 22.6 KB | Data Set S2. Chaetoceros and Pseudo-nitzschia genes that show significantly opposing expression to other diatoms. |
emi14361-sup-0004-appendixS4.xlsxExcel 2007 spreadsheet , 50.5 KB | Data Set S3. Genes of unknown function significantly expressed in our study and with positive fold-changes in similar studies on T. pseudonana (tps) and P. tricornutum (pti). The study with T. pseudonana shows genes with positive fold-changes during exponential growth and light after three days. The dataset with P. tricornutum shows genes expressed after 48 hours of darkness followed by 24 hours of re-exposure to light. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Alexander, H., Jenkins, B. D., Rynearson, T. A., and Dyhrman, S. T. (2015a) Metatranscriptome analyses indicate resource partitioning between diatoms in the field. Proc Natl Acad Sci USA 112: E2182–E2190.
- Alexander, H., Rouco, M., Haley, S. T., Wilson, S. T., Karl, D. M., and Dyhrman, S. T. (2015b) Functional group-specific traits drive phytoplankton dynamics in the oligotrophic ocean. Proc Natl Acad Sci USA 112: E5972–E5979.
- Allen, A. E., Laroche, J., Maheswari, U., Lommer, M., Schauer, N., Lopez, P. J., et al. (2008) Whole-cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation. Proc Natl Acad Sci USA 105: 10438–10443.
- Allen, A. E., Dupont, C. L., Obornik, M., Horak, A., Nunes-Nesi, A., McCrow, J. P., et al. (2011) Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. Nature 473: 203–207.
- Amin, S. A., Parker, M. S., and Armbrust, E. V. (2012) Interactions between diatoms and bacteria. Microbiol Mol Biol R 76: 667–684.
- Ashworth, J., Turkarslan, S., Harris, M., Orellana, M. V., and Baliga, N. S. (2016) Pan-transcriptomic analysis identifies coordinated and orthologous functional modules in the diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum. Mar Genomics 26: 21–28.
- Ashworth, J., Coesel, S., Lee, A., Armbrust, E. V., Orellana, M. V., and Baliga, N. S. (2013) Genome-wide diel growth state transitions in the diatom Thalassiosira pseudonana. Proc Natl Acad Sci USA 110: 7518–7523.
- Barshis, D. J., Ladner, J. T., Oliver, T. A., Seneca, F. O., Traylor-Knowles, N., and Palumbi, S. R. (2013) Genomic basis for coral resilience to climate change. Proc Natl Acad Sci USA 110: 1387–1392.
- Basu, S., Patil, S., Mapleson, D., Russo, M. T., Vitale, L., Fevola, C., et al. (2017) Finding a partner in the ocean: molecular and evolutionary bases of the response to sexual cues in a planktonic diatom. New Phytol 215: 140–156.
- Berry, D. B., and Gasch, A. P. (2008) Stress-activated genomic expression changes serve a preparative role for impending stress in yeast. Mol Biol Cell 19: 4580–4587.
- Birol, I., Jackman, S. D., Nielsen, C. B., Qian, J. Q., Varhol, R., Stazyk, G., et al. (2009) De novo transcriptome assembly with ABySS. Bioinformatics 25: 2872–2877.
- Bolger, A. M., Lohse, M., and Usadel, B. (2014) Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30: 2114–2120.
- Bronk, D. A., Glibert, P. M., and Ward, B. B. (1994) Nitrogen uptake, dissolved organic nitrogen release, and new production. Science 265: 1843–1846.
- Bruland, K. W., Rue, E. L., and Smith, G. J. (2001) Iron and macronutrients in California coastal upwelling regimes: implications for diatom blooms. Limnol Oceanogr 46: 1661–1674.
- Brzezinski, M. A., and Nelson, D. M. (1995) The annual silica cycle in the Sargasso Sea near Bermuda. Deep Sea Res Pt I 42: 1215–1237.
- Capone, D. G., and Hutchins, D. A. (2013) Microbial biogeochemistry of coastal upwelling regimes in a changing ocean. Nat Geosci 6: 711–717.
- Caron, D. A., Alexander, H., Allen, A. E., Archibald, J. M., Armbrust, E. V., Bachy, C., et al. (2017) Probing the evolution, ecology and physiology of marine protists using transcriptomics. Nat Rev Microiol 15: 6–20.
- Chen, Y., Lun, A., and Smyth, G. (2014) Differential expression analysis of complex RNA-seq experiments using edgeR. In Statistical Analysis of Next Generation Sequence Data, S. Datta, and D. S. Nettleton (eds). New York: Springer.
- Cohen, N. R., Ellis, K. A., Lampe, R. H., McNair, H. M., Twining, B. S., Brzezinski, M. A., et al. (2017) Variations in diatom transcriptional responses to changes in iron availability across ocean provinces. Front Mar Sci 4: 360.
- de Baar, H. J. W., Boyd, P. W., Coale, K. H., Landry, M. R., Tsuda, A., Assmy, P., et al. (2005) Synthesis of iron fertilization experiments: from the iron age in the age of enlightenment. J Geophys Res Oceans 110: C09S16.
- Delledonne, M. (2005) NO news is good news for plants. Curr Opin Plant Biol 8: 390–396.
- Denninger, J. W., and Marletta, M. A. (1999) Guanylate cyclase and the ·NO/cGMP signaling pathway. BBA Bioenergetics 1411: 334–350.
- Di Dato, V., Musacchia, F., Petrosino, G., Patil, S., Montresor, M., Sanges, R., and Ferrante, M. I. (2015) Transcriptome sequencing of three Pseudo-nitzschia species reveals comparable gene sets and the presence of nitric oxide synthase genes in diatoms. Sci Rep 5: 12329.
- Dugdale, R. C., and Wilkerson, F. P. (1986) The use of 15N to measure nitrogen uptake in eutrophic oceans: experimental considerations. Limnol Oceanogr 31: 673–689.
- Dugdale, R. C., and Wilkerson, F. P. (1989) New production in the upwelling center at point conception, California: temporal and spatial patterns. Deep-Sea Res 36: 985–1007.
- Estrada, M., and Blasco, D. (1985) Phytoplankton assemblages in coastal upwelling areas. In International Symposium on the Most Important Upwelling Areas off Western Africa, C. Bas, R. Margalef, and P. Rubies (eds). Barcelona: Instituto de Investigaciones Pesqueras, pp. 379–402.
- Fawcett, S., and Ward, B. (2011) Phytoplankton succession and nitrogen utilization during the development of an upwelling bloom. Mar Ecol Prog Ser 428: 13–31.
- Hunter, J. D. (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 9: 90–95.
- Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., and Morishima, K. (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45: D353–D361.
- Keeling, P. J., Burki, F., Wilcox, H. M., Allam, B., Allen, E. E., Amaral-Zettler, L. A., et al. (2014) The marine microbial eukaryote transcriptome sequencing project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol 12: e1001889.
- Krause, J. W., Nelson, D. M., and Lomas, M. W. (2009) Biogeochemical responses to late-winter storms in the Sargasso Sea, II: increased rates of biogenic silica production and export. Deep Sea Res Pt I 56: 861–874.
- Kröger, N., Deutzmann, R., and Sumper, M. (2001) Silica-precipitating peptides from diatoms: the chemical structure of Silaffin-1A from Cylindrotheca fusiformis. J Biol Chem 276: 26066–26070.
- Kudela, R. M., and Dugdale, R. C. (2000) Nutrient regulation of phytoplankton productivity in Monterey Bay, California. Deep Sea Res Pt II 47: 1023–1053.
- Lachkar, Z., and Gruber, N. (2013) Response of biological production and air–sea CO2 fluxes to upwelling intensification in the California and canary current systems. J Mar Syst 109–110: 149–160.
- Langmead, B., and Salzberg, S. L. (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9: 357–359.
- Lassiter, A. M., Wilkerson, F. P., Dugdale, R. C., and Hogue, V. E. (2006) Phytoplankton assemblages in the CoOP-WEST coastal upwelling area. Deep Sea Res Pt II 53: 3063–3077.
- Lelong, A., Hégaret, H., Soudant, P., and Bates, S. S. (2012) Pseudo-nitzschia (Bacillariophyceae) species, domoic acid and amnesic shellfish poisoning: revisiting previous paradigms. Phycologia 51: 168–216.
- Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25: 2078–2079.
- Llácer, J. L., Fita, I., and Rubio, V. (2008) Arginine and nitrogen storage. Curr Opin Struct Biol 18: 673–681.
- MacIsaac, J. J., Dugdale, R. C., Barber, R. T., Blasco, D., and Packard, T. T. (1985) Primary production cycle in an upwelling center. Deep Sea Res 32: 503–529.
- Marchetti, A., Parker, M. S., Moccia, L. P., Lin, E. O., Arrieta, A. L., Ribalet, F., et al. (2009) Ferritin is used for iron storage in bloom-forming marine pennate diatoms. Nature 457: 467–470.
- Marchetti, A., Schruth, D. M., Durkin, C. A., Parker, M. S., Kodner, R. B., Berthiaume, C. T., et al. (2012) Comparative metatranscriptomics identifies molecular bases for the physiological responses of phytoplankton to varying iron availability. Proc Natl Acad Sci USA 109: E317–E325.
- McManus, M. A., Kudela, R. M., Silver, M. W., Steward, G. F., Donaghay, P. L., and Sullivan, J. M. (2008) Cryptic blooms: are thin layers the missing connection? Estuar Coast 31: 396–401.
- Miyoshi, T., Kanoh, J., Saito, M., and Ishikawa, F. (2008) Fission yeast Pot1-Tpp1 protects telomeres and regulates telomere length. Science 320: 1341–1344.
- Nymark, M., Valle, K. C., Hancke, K., Winge, P., Andresen, K., Johnsen, G., et al. (2013) Molecular and photosynthetic responses to prolonged darkness and subsequent acclimation to re-illumination in the diatom Phaeodactylum tricornutum. PLoS One 8: e58722.
- Parsons, T. R., Maita, Y., and Lalli, C. M. (1984) A Manual of Chemical & Biological Methods for Seawater Analysis. Amsterdam: Pergamon.
- Passow, U. (2002a) Transparent exopolymer particles (TEP) in aquatic environments. Prog Oceanogr 55: 287–333.
- Passow, U. (2002b) Production of transparent exopolymer particles (TEP) by phyto- and bacterioplankton. Mar Ecol Prog Ser 236: 1–12.
- Pfaffen, S., Bradley, J. M., Abdulqadir, R., Firme, M. R., Moore, G. R., Le Brun, N. E., and Murphy, M. E. P. (2015) A diatom ferritin optimized for iron oxidation but not iron storage. J Biol Chem 290: 28416–28427.
- Pitcher, G. C. (1990) Phytoplankton seed populations of the cape peninsula upwelling plume, with particular reference to resting spores of Chaetoceros (bacillariophyceae) and their role in seeding upwelling waters. Estuar Coast Shelf Sci 31: 283–301.
- Redfield, A. C., Ketchum, B. H., and Richards, F. A. (1963) The influence of organisms on the composition of sea water . In The Sea, M. Hill (ed). New York: Interscience, pp. 26–77.
- Rines, J. E. B., Donaghay, P. L., Dekshenieks, M. M., Sullivan, J. M., and Twardowski, M. S. (2002) Thin layers and camouflage: hidden Pseudo-nitzschia spp. (Bacillariophyceae) populations in a fjord in the San Juan Islands, Washington, USA. Mar Ecol Prog Ser 225: 123–137.
- Robertson, G., Schein, J., Chiu, R., Corbett, R., Field, M., Jackman, S. D., et al. (2010) De novo assembly and analysis of RNA-seq data. Nat Methods 7: 909–912.
- Robinson, M. D., and Smyth, G. K. (2008) Small-sample estimation of negative binomial dispersion, with applications to SAGE data. Biostatistics 9: 321–332.
- Robinson, M. D., McCarthy, D. J., and Smyth, G. K. (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139–140.
- Ryan, J. P., Chavez, F. P., and Bellingham, J. G. (2005) Physical-biological coupling in Monterey Bay, California: topographic influences on phytoplankton ecology. Mar Ecol Prog Ser 287: 23–32.
- Ryther, J. H. (1969) Photosynthesis and fish production in the sea. Science 166: 72–76.
- Sakihama, Y., Nakamura, S., and Yamasaki, H. (2002) Nitric oxide production mediated by nitrate reductase in the green alga Chlamydomonas reinhardtii: an alternative NO production pathway in photosynthetic organisms. Plant Cell Physiol 43: 290–297.
- Schnetzer, A., Jones, B. H., Schaffner, R. A., Cetinic, I., Fitzpatrick, E., Miller, P. E., et al. (2013) Coastal upwelling linked to toxic Pseudo-nitzschia australis blooms in Los Angeles coastal waters, 2005–2007. J Plankton Res 35: 1080–1092.
- Seegers, B. N., Birch, J. M., Marin, R., Scholin, C. A., Caron, D. A., Seubert, E. L., et al. (2015) Subsurface seeding of surface harmful algal blooms observed through the integration of autonomous gliders, moored environmental sample processors, and satellite remote sensing in southern California. Limnol Oceanogr 60: 754–764.
- Shikata, T., Iseki, M., Matsunaga, S., Higashi, S. -i., Kamei, Y., and Watanabe, M. (2011) Blue and red light-induced germination of resting spores in the red-tide diatom Leptocylindrus danicus. Photochem Photobiol 87: 590–597.
- Smith, G. J., Zimmerman, R. C., and Alberte, R. S. (1992) Molecular and physiological responses of diatoms to variable levels of irradiance and nitrogen availability: growth of Skeletonema costatum in simulated upwelling conditions. Limnol Oceanogr 37: 989–1007.
- Thompson, S. E. M., Taylor, A. R., Brownlee, C., Callow, M. E., and Callow, J. A. (2008) The role of nitric oxdie in diatom adhesion in relation to substratum properties. J Phycol 44: 967–976.
- Utermöhl, H. (1958) Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt Int Ver Theor Angew Limnol 9: 1–38.
- Vardi, A. (2008) Cell signaling in marine diatoms. Commun Integr Biol 1: 134–136.
- Wilkerson, F. P., and Dugdale, R. C. (1987) The use of large shipboard barrels and drifters to study the effects of coastal upwelling on phytoplankton dynamics. Limnol Oceanogr 32: 368–382.
- Wilkerson, F. P., and Dugdale, R. C. (2008) Nitrogen in the Marine Environment, 2nd ed. Burlington, MA, USA: Academic Press.
- Wilkerson, F. P., Dugdale, R. C., Kudela, R. M., and Chavez, F. P. (2000) Biomass and productivity in Monterey Bay, California: contribution of the large phytoplankton. Deep Sea Res Pt II 47: 1003–1022.
- Wilkerson, F. P., Lassiter, A. M., Dugdale, R. C., Marchi, A., and Hogue, V. E. (2006) The phytoplankton bloom response to wind events and upwelled nutrients during the CoOP WEST study. Deep Sea Res Part II: Top Stud Oceanogr 53: 3023–3048.